"The Bacteria and Archaea are the most genetically diverse superkingdoms of life, and techniques for exploring that diversity are only just becoming widespread. Taxonomists classify these organisms into species in much the same way as they classify eukaryotes, but differences in their biology—including horizontal gene transfer between distantly related taxa and variable rates of homologous recombination—mean that we still do not understand what a bacterial species is. This is not merely a semantic question; evolutionary theory should be able to explain why species exist at all levels of the tree of life, and we need to be able to define species for practical applications in industry, agriculture, and medicine. Recent studies have emphasized the need to combine genetic diversity and distinct ecology in an attempt to define species in a coherent and convincing fashion. The resulting data may help to discriminate among the many theories of prokaryotic species that have been produced to date. "
http://www.sciencemag.org/content/323/5915/741.short_____________________
The genome itself is embedded within the epigenetic net, and is far from stable or insulated from environmental exigencies. A large number of processes appear to be designed especially to destablize genomes during the life-time of all organisms, so much so that molecular geneticists have been inspired to coin the descriptive phrase, "the fluid genome". Mutations, insertions, deletions, amplifications, rearrangements, recombinations, gene-jumpings, and gene-conversions keep genomes in a constant state of flux in evolutionary time. Genes are found to jump between species that do not interbreed, being carried by mobile genetic elements, viruses or microorganisms, which can exchange genes at a prolific rate, as witnessed by the rapid horizontal spread of antiobiotic resistance in bacteria.
Parasites that infect more than one species are also vectors for horizontal gene transfer. A particular genetic element - the P-element - has spread to all species of fruitflies in the wild within the span of less than 50 years, probably carried by a parasitic mite. These 'fluid genome' processes are by no means entirely stochastic or meaningless, but are subject to physiological and cellular control. Gene jumping, recombination and other alterations of the genome are frequent responses to stress or starvation in non-dividing cells that enable them to adapt or adjust to new situations. Similarly, cellular processes regularly inactivate whole batteries of genes by chemically marking them during normal development, or imprint them with binding proteins that alter the expression of the genes. Some of these marks and imprints are created early in development and may be passed on to the next generation via the germ cells. These instances of 'epigenetic inheritance' already constitute a substantial body of literature.
http://www.epigenetics.ch/gpage1.html"Since the emergence of horizontal gene transfer as a way of explaining phylogenetic incongruence using different gene trees, a considerable number of studies have been published about genes that have been acquired by horizontal gene transfer (Gogarten et al. 2002; Lerat et al. 2005), both in Bacteria (Saunders et al. 1999; Ochman et al. 2000) and Archaea (Doolittle & Logsdon 1998; Faguy & Doolittle 1999), as well as in eukaryotes (Andersson 2005).
These studies show that the transfer can occur not only among but also between domains in all possible directions: from Bacteria to Archaea (Rest & Mindell 2003), from Archaea to Bacteria (Gophna et al. 2004), from Archaea to Eukarya (Andersson et al. 2003), from Bacteria to Eukarya (Watkins & Gray 2006), from Eukarya to Bacteria (Guljamow et al. 2007) and even within Eukarya (Nedelcu et al. 2008). However, it is in bacterial and archaeal evolution that horizontal gene transfer has been more widely documented and accepted."
http://rspb.royalsocietypublishing.org/content/277/1683/819.full